Главная » Статьи » Новые технологии и материалы |
Микрокремнезем используется везде - от бетонных блоков до нефтяных сооружений, и его рабочие качества исследуются и проверяются по всему миру. Ультрамелкие пуццолановые побочные продукты промышленности кремниевых сплавов обозначаются по крайней мере 17 различными названиями, некоторые из них представлены в таблице 1. В научном мире термин "конденсированные пары кремнезема" сейчас применяется по отношению к парам, получаемым из целого ряда сплавов. Большинство исследований влияния этих материалов на бетон посвящено концентрированным парам кремнезема, для обозначения которых становится общепринятым термин "микрокремнезем". Для удобства в данном тексте материалы, представляющие особый интерес для бетонной промышленности, будут называться "микрокремнезем". История Норвежский Технологический Институт изучает свойства бетона с содержанием микрокремнезема уже 35 лет. Расширение применения порошка микрокремнезема в готовых бетонных смесях с 1975 привело к принятию норвежских стандартов для микрокремнезема в цементе (1976) и в бетоне (1978). В Канаде использование микрокремнезема в бетоне было одобрено в 1981, в том же году первые промышленные смеси портландцемент/микрокремнезем были произведены в Исландии. В Канаде такие смеси появились в 1982. Микрокремнезем используется везде - от бетонных блоков до нефтяных сооружений, и его рабочие качества исследуются и проверяются по всему миру. Источники и производство Кремний, феррокремний и другие кремниевые сплавы вырабатываются в электродуговых печах. Чистый кварц плавится с углем и рудами при очень высоких температурах и микрокремнезем собирается путем охлаждения и фильтрования печных газов. Заводы кремниевых сплавов потребляют огромное количество энергии, поэтому они обычно расположены там, где доступна дешевая гидроэлектроэнергия. В число ведущих производителей входят Норвегия, Канада и Исландия. В 1984 импорт в Великобританию составлял менее 10000 тонн, сейчас ежегодно поставляется более 120000 тонн высококачественного микрокремнезема. Химические и физические характеристики Вид сплава, вырабатываемого в печи, является основным фактором, определяющим характер материала, собранного в рукавных фильтрах. Печи для производства феррокремниевых сплавов с содержанием кремния свыше 72% дают микрокремнезем, очень сходный по своим свойствам и составу. Конденсированные пары кальциево-кремниевых, феррохромо-кремниевых и кремниево-марганцевых сплавов могут обладать сходными физическими характеристиками, но их химический состав может существенно отличаться. Частицы микрокремнезема имеют гладкую поверхность и сферическую форму. Средний размер частиц составляет 0,1-0,2 микрон, то есть они в 50-100 раз мельче цемента или летучей золы, а удельная площадь поверхности составляет от 13000 до 25000 м2/кг. Порошок, собранный в фильтрах, фактически состоит из рыхлых агломератов с очень низкой насыпной плотностью. По сравнению с другими вяжущими материалами, микрокремнезем отличается очень высоким содержанием реактивного кремнезема и мелкостью. На содержание углерода и, следовательно, цвет влияет главным образом наличие или отсутствие в печи системы теплорегенерации. Не считая этого, изменчивость материала в зависимости от особенностей печи или состава сплава крайне невысока. Виды и сорта. В настоящее время в Великобритании имеется в основном микрокремнезем из чистых сплавов. Чистейший продукт поступает с металло-кремниевого производства, отличается высокой ценой и ограниченной сферой применения - промышленность огнеупорных материалов. Микрокремнезем для использования в бетоне получают из феррокремниевых сплавов. Некоторые поставщики микрокремнезема смешивают материал из различных источников для получения продукта постоянного состава с разницей в содержании реактивного кремнезема +/-2%. Пары сплавов с высоким содержанием кальция или марганца настолько отличаются по химическому составу по сравнению с чистым микрокремнеземом, что их следует рассматривать как различные материалы. Проведены небольшие исследования их применения в бетоне и очевидно, что их пуццолановая активность гораздо ниже. Суспензии в сравнении с порошками Необработанный микрокремнезем очень трудно транспортировать и хранить. Был сделан ряд попыток получить более удобный в обращении материал с помощью таких методов как микрогранулирование путем длительной аэрации, механическое гранулирование и агломерация путем высушивания суспензий. Хотя с такими материалами и легче обращаться, но они все же плохо рассеивается в бетонной смеси и, как правило, необходимо использовать пластификатор или суперпластификатор. Суспензии микрокремнезема, по-видимому, представляют собой наиболее практичную форму для крупномасштабного производства обычного бетона. Сырой микрокремнезем смешивается с равным количеством воды и суспензируется с помощью высокомощных смесительных установок. Для обеспечения химической и физической стабильности суспензии водородный показатель pH должен находиться в пределах от 4,5 до 5,5. Существуют суспензии, включающие в себя целый ряд химических добавок, но недавний опыт на участке в Великобритании показывает, что обычный бетон можно получить при добавлении одной водной суспензии. Удельный вес суспензий составляет 1,3-1,4, а вязкость - 20 секунд при 4мм чашке, то есть показатели сравнительно низкие. Воздействие на свойства бетона Суспензии и порошки существенно отличаются только по своему воздействию на пластичный бетон. Их влияние на свойства затвердевшего бетона одинаково. Поскольку суспензии микрокремнезема без примесей, вероятно, представляют наибольший интерес для производителей бетона, в остальной части текста термин "микрокремнезем" употребляется по отношении к 50% водной суспензии, если не указано иное. Дозировка микрокремнезема выражается в процентном содержании твердого микрокремнезема от массы цемента. Вес добавляемой в смесь суспензии в два раза превышает вес требуемого твердого микрокремнезема. Пластические свойства В Великобритании опыт на участке показал, что правильно составленная бетонная смесь, содержащая менее 300 кг/м3 обычного портландцемента и менее 10% микрокремнезема, практически не отличается по водопотребности для эквивалентной номинальной осадки конуса по сравнению с обычными смесями с тем же общим содержанием вяжущих. Даже в таких небольших дозах микрокремнезем обеспечивает отличительные "квазитиксотропные" свойства смеси. На первый взгляд свежеприготовленная бетонная смесь кажется более жесткой, чем показывают результаты теста осадки конуса, однако, ее намного легче подавать насосом, укладывать и отделывать. На участке наблюдалось аномальное поведение смеси, такое как повышение удобообрабатываемости после длительного перемешивания или прохождения через бетононасос. Жирные смеси с более высоким содержанием микрокремнезема и/или цемента могут стать вязкими и требовать больше усилий для укладки и уплотнения, в таком случае рекомендуется использовать пластификаторы. Рассеявшись, мельчайшие частицы микрокремнезема уплотняют и стабилизируют смесь и существенно снижают выступание воды и расслоение. В жирных смесях это может привести к образованию трещин при пластической усадке, поскольку вода, испаряющаяся с поверхности, не заменяется выступающей водой. В жаркую или ветреную погоду необходимо уделять особое внимание защите и выдерживанию бетона. Нарастание прочности. Как и все пуццолановые материалы,
микрокремнезем вступает в реакцию с гидрокисью кальция Ca(OH)2, освобождаемой
при гидратации портландцемента для образования вяжущих соединений. Очень
высокая чистота и мелкость микрокремнезема способствует более эффективной и
быстрой реакции. При надлежащем рассеивании тысячи реактивных сферических
микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя
пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями.
Степень пуццолановой активности зависит от содержания реактивного кремнезема,
но на практике между двумя видами материала с высоким содержанием кремнезема существует
довольно незначительное различие. Микрокремнезем может обеспечить прочность на
сжатие, намного превышающую прочность обычных бетонов, и здесь ограничивающим
фактором является только прочность заполнителя. При использовании природных
заполнителей достигается прочность свыше 150 N/mm2, а при использовании
специальных высокопрочных заполнителей можно достичь прочности 300 N/mm2. Темпы
нарастания прочности обычного бетона с содержанием микрокремнезема слегка
отличается по сравнению с современными бетонами на обычном портландцементе.
Обычно через 7 дней он приобретает только 55-65% от 28-дневной прочности при
выдерживании при температуре 20 гр.С. Основная пуццолановая активность,
по-видимому, протекает между 7 и 20 днями. Микрокремнезем зачастую используется
в сочетании с летучей золой и гранулированным доменным шлаком для достижения
более приемлемых темпов нарастания прочности. Опыт других стран, недавно
получивший подтверждение в Великобритании, показал, что Щелочность Доказано, что микрокремнезем оказывает существенное влияние на щелочность воды в порах цементного геля. Пуццолановая реакция, по-видимому, приводит к образованию геля с высоким содержанием кремнезема, связывающего щелочные металлы, и возможно, с высоким содержанием связанной воды. Уровень водородного показателя pH воды в порах бетона на обычном портландцементе равен 14. При добавлении даже умеренного количества микрокремнезема он очень быстро снижается до 13. При добавлении свыше 15% микрокремнезем в конечном счете забирает из воды в порах практически все ионы щелочных металлов, понижая уровень pH до 12,5. При добавлении около 25% микрокремнезем нейтрализует всю свободную известь, освобожденную силикатами портландцемента. При этом общий уровень pH бетона едва ли снижается до того, что это оказывает неблагоприятное воздействие на инертность арматуры. Проницаемость Эффект заполнения пор, создаваемый пуццолановыми сферическими микрочастицами, способствует значительному уменьшению капиллярной пористости и проницаемости бетона. Фактически непроницаемый бетон можно получить при умеренном содержании микрокремнезема и сравнительно низком содержании обычного порландцемента. Поскольку микрокремнезем оказывает большее влияние на проницаемость, чем на прочность, бетон с содержанием микрокремнезема всегда будет гораздо менее проницаемым, чем бетон эквивалентной прочности на обычном портландцементе. Защита арматуры Теоретически, пониженная щелочность бетона с содержанием микрокремнезема должна ослаблять его устойчивость к карбонизации и хлоридам. В Норвегии и Швеции исследования бетонных конструкций в возрасте до 12 лет показали, что высококачественные бетоны с содержанием микрокремнезема обладают не меньшей устойчивостью к карбонизации, чем бетоны такой же прочности на обычном портландцементе, и гораздо лучше предотвращают проникновение хлоридов из морской воды. Однако, плохо выдержанный бетон с микрокремнеземом в этом отношении страдает больше, нежели бетон на обычном портландцементе. Проведена масса лабораторных измерений коррозии арматуры, но предсказать ее рабочие характеристики в реальных условиях трудно. Хотя можно с уверенностью сказать, что при условии надлежащего выдерживания, способность бетона с микрокремнеземом защищать стальную арматуру не будет существенно отличаться по сравнению с бетоном той же прочности на обычном портландцементе. Морозостойкость Низкая проницаемость и повышенная плотность цементного камня обеспечивает прекрасную морозостойкость бетона с микрокремнеземом. По всей видимости, не существует теоретической несовместимости микрокремнезема с воздуховолекающими добавками, в действительности стабильная реологическая структура пластичного бетона с микрокремнеземом должна уменьшать потерю вовлеченного воздуха при транспортировке и вибрировании. Химическое воздействие Известно, что низкая проницаемость и низкое содержание свободной извести повышает устойчивость бетона к воздействию агрессивных химических веществ. Бетон с содержанием микрокремнезема обладает этими качествами и проявляет прекрасную устойчивость к воздействию целого ряда веществ. Долгосрочные полевые испытания в Норвегии показали, что по своей потенциальной устойчивости к сульфатам он равен сульфатостойкому портландцементу. | |
Просмотров: 5808
| Теги: |
Всего комментариев: 0 | |